Difference between revisions of "Cisco OSPF"
Helikopter (talk | contribs) |
Helikopter (talk | contribs) |
||
Line 28: | Line 28: | ||
* Database Description: Innehåller LSA headers under den initiala topologi-synken | * Database Description: Innehåller LSA headers under den initiala topologi-synken | ||
* Link-State Request: Innehåller vilka LSA:er som avsändaren vill ha alla detaljer om | * Link-State Request: Innehåller vilka LSA:er som avsändaren vill ha alla detaljer om | ||
− | * Link-State Update: Innehåller alla detaljer om LSA:er och skickas på förfrågan eller vid topologiändring | + | * Link-State Update: Innehåller alla typer och detaljer om LSA:er och skickas på förfrågan eller vid topologiändring |
* Link-State Acknowledgment: LSU confirmation | * Link-State Acknowledgment: LSU confirmation | ||
Line 61: | Line 61: | ||
passive-interface default | passive-interface default | ||
no passive-interface [interface] | no passive-interface [interface] | ||
+ | show ip ospf interface | i Ethernet|Passive | ||
Specificera granne manuellt, detta måste göras på NBMA och point-to-multipoint nonbroadcast. Det räcker att göra detta på ena sidan för att grannskap ska bildas men best practice är att köra detta på båda sidor. | Specificera granne manuellt, detta måste göras på NBMA och point-to-multipoint nonbroadcast. Det räcker att göra detta på ena sidan för att grannskap ska bildas men best practice är att köra detta på båda sidor. | ||
Line 140: | Line 141: | ||
interface gi0/0 | interface gi0/0 | ||
ip ospf network ? | ip ospf network ? | ||
− | Loopback | + | Loopback annonseras default som /32, detta ändras med point-to-point. |
interface lo1 | interface lo1 | ||
ip ospf network point-to-point | ip ospf network point-to-point | ||
Line 166: | Line 167: | ||
auto-cost reference-bandwidth 100000 #Mbits per second | auto-cost reference-bandwidth 100000 #Mbits per second | ||
show ip ospf interface | i Cost | show ip ospf interface | i Cost | ||
− | |||
− | |||
− | |||
'''AD''' | '''AD''' | ||
Line 180: | Line 178: | ||
==Authentication== | ==Authentication== | ||
− | Klassisk OSPF | + | Klassisk OSPF authentication är none/null, clear-text eller MD5. Default är none och man slår på det per interface. Går även att köra authentication på virtual links, se det stycket. |
− | Enable clear-text authentication on | + | Enable clear-text authentication on area 0 |
router ospf 1 | router ospf 1 | ||
area 0 authentication | area 0 authentication | ||
− | Enable MD5 authentication on | + | interface gi0/1 |
+ | ip ospf authentication-key [password] | ||
+ | |||
+ | Enable MD5 authentication on area 0 | ||
area 0 authentication message-digest | area 0 authentication message-digest | ||
+ | interface gi0/1 | ||
+ | ip ospf message-digest-key 10 md5 [password] | ||
− | Enable | + | Enable MD5 authentication on an interface |
− | interface | + | interface gi0/1 |
− | ip ospf | + | ip ospf authentication message-digest |
ip ospf message-digest-key 10 md5 [password] | ip ospf message-digest-key 10 md5 [password] | ||
+ | |||
+ | Verify | ||
+ | show ip ospf interface | i Ethernet|authentication | ||
'''Extended cryptographic authentication''' finns i modernare implementationer av OSPF och har stöd för key-chains och SHA-HMAC. Nyckel med högst id används ifall det finns flera nycklar som är aktiva. | '''Extended cryptographic authentication''' finns i modernare implementationer av OSPF och har stöd för key-chains och SHA-HMAC. Nyckel med högst id används ifall det finns flera nycklar som är aktiva. | ||
Line 211: | Line 217: | ||
'''ABR''' | '''ABR''' | ||
router ospf 1 | router ospf 1 | ||
− | + | area 10 range 10.10.0.0 255.255.252.0 | |
− | |||
'''ASBR''' | '''ASBR''' | ||
router ospf 1 | router ospf 1 | ||
− | + | summary-address 10.10.0.0 255.255.252.0 | |
− | |||
==Convergence== | ==Convergence== | ||
Line 272: | Line 276: | ||
area 1 virtual-link 1.1.1.1 #Router-ID | area 1 virtual-link 1.1.1.1 #Router-ID | ||
− | ''' | + | '''Verify''' |
show ip ospf virtual-links | show ip ospf virtual-links | ||
− | ===LFA | + | ==Diverse== |
+ | '''LFA''' <br/> | ||
Loop-Free Alternate Fast Reroute. Single Hop LFA / IP FRR. | Loop-Free Alternate Fast Reroute. Single Hop LFA / IP FRR. | ||
− | |||
'''MTU mismatch''' | '''MTU mismatch''' | ||
ip ospf mtu-ignore | ip ospf mtu-ignore | ||
Line 284: | Line 288: | ||
'''Discard''' | '''Discard''' | ||
no discard-route external | no discard-route external | ||
+ | |||
+ | '''iSPF''' <br/> | ||
+ | SPF-algoritmen behöver inte köras för alla länkar varje gång det sker en topologi-förändring. Med incremental SPF körs endast algoritmen för de delar som har påverkats av förändringen för att spara CPU-cykler. Detta går att styra individuellt på enheterna med ''ispf''-kommandot. Det kan vara svårt att veta exakt hur mycket skillnad detta gör men generellt ju större topologi ju större skillnad. | ||
+ | router ospf 1 | ||
+ | ispf | ||
+ | show ip ospf | i Incremental | ||
=Redistribution= | =Redistribution= |
Revision as of 19:36, 25 April 2016
Open Shortest Path First (RFC 2328) är ett link-state routing protokoll och vilket betyder att enheterna känner till alla länkar i topologin och deras operational states och lagrar detta i en LSDB. Routrar måste ha ett OSPF-id för att kunna skicka meddelanden. OSPF kommunicerar med multicast som alltid har ttl satt till 1. OSPF använder IP protokoll #89. Se även OSPFv3.
Type: Link State
Algorithm: Dijkstra
AD: 110
Metric: Cost (Bandwidth)
Protocols: IP
Packets: 5
Contents
Router ID
På Ciscoenheter väljs ID enligt följande ordning:
- router-id kommandot
- Högsta IP-adressen på ett no-shut loopback interface (som ej är assignat någon annan OSPF-process)
- Högsta IP-adressen på ett no-shut interface (som ej är assignat någon annan OSPF-process)
Interfacen behöver inte vara nåbara eller ha något med OSPF att göra utan alla interface jämförs. ID ändras endast när processen startas om eller router-id-kommandot körs.
router-id for this OSPF process (in IPv4 address format)
router ospf 1 router-id 1.1.1.1
Paket-typer
- Hello: Upptäcka grannar. Innehåller mask, timers, flaggor, DR/BDR (om det finns) och router-ID för grannar.
- Database Description: Innehåller LSA headers under den initiala topologi-synken
- Link-State Request: Innehåller vilka LSA:er som avsändaren vill ha alla detaljer om
- Link-State Update: Innehåller alla typer och detaljer om LSA:er och skickas på förfrågan eller vid topologiändring
- Link-State Acknowledgment: LSU confirmation
Grannskap
Neighbors måste komma överens om:
- Subnät/Mask
- Area
- Timers
- Olika router-ID
- Flaggor: Stub, NSSA
- MTU
- Authentication type
- Kompatibla nätverkstyper, DR-election eller ej
Graceful shutdown, en OSPF router skickar ett HELLO utan grannar då tas grannskapet ner.
Neighbor states
Kronologisk ordning
- Down: Initial state. Om det inte kommer in några OSPF-paket under Dead interval blir grannen down.
- Attempt: Gäller endast NBMA och point-to-multipoint nonbroadcast.
- Init: Ett hello (utan mottagarens router-ID) har tagits emot.
- 2-way: Ett hello med mottagarens router-ID har tagits emot.
- ExStart: Utbyta tomma DD för att bestämma master/slave.
- Exchange: Utbyta database description
- Loading: LSA:er tankas över
- Full: Allt klart
Logga ändringar i neighbor state
router ospf 1 log-adjacency-changes
Styr grannskap/uppdateringar med passive-interface
passive-interface default no passive-interface [interface] show ip ospf interface | i Ethernet|Passive
Specificera granne manuellt, detta måste göras på NBMA och point-to-multipoint nonbroadcast. Det räcker att göra detta på ena sidan för att grannskap ska bildas men best practice är att köra detta på båda sidor.
router ospf 1 neighbor 10.0.0.2
Man kan sätta prioritet på sina grannar. Default är detta 0 men om man har flera neighbor statements och någon har icke-noll så kommer routern att först skicka Hellos till denna. Endast när DR/BDR election är klart så börjar det skickas Hellos till de övriga grannarna. Detta är en mekanism som ökar chansen att DR och BDR blir de routrar man vill. OBS detta har inget med vinnare av DR/BDR att göra.
router ospf 1 neighbor 10.0.0.5 priority <0-255>
Show
show ip ospf neighbor
Clearing routing process
clear ip ospf process
LSA-typer
LSUer innehåller link-state advertisements, dessa beskriver länkar i nätverket. Det är endast den router som en LSA härstammar ifrån som får modifiera eller ta bort LSA:n. Andra routrar måste processa och skicka den omodifierad vidare inom sitt flodding scope, de får ej droppa den innan maximum lifetime har gått ut. Detta säkerställer att alla routrar har identiska LSDB men det medför också att man blir begränsad i var man kan aggregera och filtrera routes. För att ta bort en LSA snabbt sätts age till 3600 sekunder (maximum lifetime) och den kommer då att tas bort direkt.
De vanligaste LSAerna.
- Type 1, Router: Alla routrar skapar och floodar en LSA som representerar sig själv. Det finns information om vilka interface och grannar som finns i den arean. Floodas endast inom origin area.
show ip ospf database router
- Type 2, Network: Dessa representerar transit subnät och skapas endast om det finns en DR på det subnätet, dvs multiaccess-segment. LSID sätts till DRs interface IP på subnätet men innehåller också information (RID) om alla grannar till DR på det subnätet. Floodas endast inom origin area.
show ip ospf database network
Typ 1 och 2 räcker för att alla routrar inom arean ska kunna känna till topologin och köra SPF för att bestämma bästa vägarna.
- Type 3, Net Summary: Typ 1 och 2 går ej till andra areor utan istället skapar ABR (router med ben i 2 areor) typ 3 LSA:er. Det som annonseras är samma men den enda infon som skickas med är: subnät, mask och costen för ABR att nå dit. Typ 3 LSAer korsar aldrig areor, istället har ABR en intern OSPF-routingtabell som innehåller allt som har kommit i backbone-arean och för varje intra- eller inter-area route skapas det nya typ 3 LSAer som floodas i nonbackbone-arean.
show ip ospf border-routers show ip ospf database summary
- Type 4, ASBR Summary: När en ABR floodar vidare en typ 5 LSA in i sin area vet inte övriga routrar i arean hur långt det är till ASBR. Därför skapar den en LSA typ 4 som den floodar. Den innehåller ASBRs RID och ABRs cost till ASBR. Typ 4 LSAer behöver inte finnas i samma area som ASBR utan behövs i övriga areor.
show ip ospf database asbr-summary
- Type 5, AS External: När en ASBR skickar in en extern route skapar den en typ 5 LSA som innehåller metric och metric type. Det som är intressant för övriga routrar att veta är hur långt det är till ASBR, ifall det finns flera vägar som är lika används alla. Och finns det flera ASBR används den som är närmast internt enligt SPF.
show ip ospf border-routers show ip ospf database external
Det finns två typer av externa routes, E1 (increment metric) och E2 (do not increment metric). Default på Cisco är E2 för redistribution, dock är E1 prefered över E2.
- Type 7, NSSA External:
Floodas inom egna arean, översätts till LSA typ 5 av ABR med högst RID för att lämna arean.
show ip ospf database nssa-external
Se alla LSA:er
show ip ospf database
Typ 6 och 8 stöds inte på Cisco-routrar och 9-11 är Opaque.
Area types
Att dela upp sitt nätverk i OSPF-areor är grunden för att göra OSPF mer skalbart eftersom det sparar på SPF-beräkningar. Förutom vanliga areor finns det flera andra typer.
Stub
Alla areor behöver inte känna till alla externa nätverk. Då kan man reducera overhead genom att ha areor där man endast skickar in LSA typ 3. Dvs det finns ingen ASBR och LSA typ 4 och 5 stoppas vid ABR. Skulle det komma en LSA 4/5 från någon så ignoreras den. För att hitta ut ur arean så skickar ABR:er in default route med en LSA typ 3.
router ospf 1 area 1 stub
Stub bit is sent in hello packets
Totally Stubby
Totally stubby är samma som stubby fast alla LSA typ 3 blockas också förutom default routen. Inga LSA typ 3,4,5 gör att LSDB reduceras ytterligare.
ABR
area 1 stub no-summary
Others
area 1 stub
NSSA
Om man vill effektivisera OSPF samtidigt som man behöver injicera in routes från något att protokoll genom någon router i en stubby area så kommer det inte att funka eftersom LSA 4/5 ignoreras. Då får man använda en not-so-stubby area och då skapar ASBR LSA typ 7 istället. NSSA är en kompromiss som tillåter att externa routes kan laddas upp till backbone-arean medans all information från övriga areor ej behöver tas in i arean. I en NSSA kommer inte default routen att annonseras default som i övriga stubby areas.
router ospf 1 area 1 nssa area 1 nssa default-information-originate
NSSA Totally Stubby
NSSA Totally Stubby är samma som NSSA fast alla LSA typ 3 blockas också förutom default routen, samt att default routen injiceras default. Inga LSA typ 3,4,5.
area 1 nssa no-summary
Nätverkstyper
Det finns olika typer av nätverk och pga hur OSPF fungerar måste man konfigurera det lite olika beroende på typ. T.ex. DR/BDR election hålls endast på broadcast och NBMA. Om frame relay används måste DR och BDR ha PVC till alla andra routrar annars får inte alla uppdateringar.
Ändra nätverkstyp på ett interface.
interface gi0/0 ip ospf network ?
Loopback annonseras default som /32, detta ändras med point-to-point.
interface lo1 ip ospf network point-to-point
Designated Router
OSPF optimerar flooding-processen på multiaccess-länkar genom att använda designated routers och backup designated routers. Annars hade varenda router på ett sådant segment behövt upprätta fulla grannskap med alla andra. Med en DR räcker det med att alla utbyter LSDB endast med den, detta resulterar i mindre trafik. Varje router har fullt grannskap med DR och BDR, 2-way med övriga. DR har två syften, det är också så att det är DRs som skapar typ 2 LSAn som representerar multiaccess-segmentet.
Behöver en DR skicka ut en LSU gör den det till 224.0.0.5 som alla DROther lyssnar på. Behöver en DROther skicka en uppdatering gör den det till 224.0.0.6 som DR och BDR lyssnar på. Alla enheter som får en LSU ackar den med en unicast LSAck till avsändaren, med undantag om LSUn kom från sig själv. I topologier utan DR används 224.0.0.5 för allt.
DR election görs mellan 2-way och ExStart i och med att Hellos innehåller DR/BDR om det finns. Om det kommer in en Hello med DR satt till 0.0.0.0 betyder det att det inte finns någon DR än, t.ex. efter ett outage. Då väntar routern en liten stund för att ge andra en chans att komma upp. Detta kallas OSPF wait time och är ställt till samma som Dead time på det interfacet. Under wait time lyssnar routern in RID och prioritet från sina grannar. Val av DR/BDR görs först efter wait time är över. Election görs lokalt på routern utifrån de värden som kommit in. Dock slutar det alltid med att alla har samma.
Finns det en DR RID i ett Hello som kommer in så har någon annat gjort valet och man kan direkt hoppa till election, dvs skippa resten av wait time. Det som görs då är att man fyller den roll som ej är fylld, t.ex. BDR genom att ta den högsta prioriteten och högsta router id som man känner till. Detta gör att det inte finns någon preemption. Däremot kan det tillfälligt existera routrar som är klara med election och som har kommit fram till olika slutsatser. Då byter man DR/BDR till de med högst prio/id när man upptäcker krocken. Alla routrar med OSPF priority 1-255 är med i election, 1 är default och sätter man 0 ignoreras DR/BDR election på den enheten.
interface gi0/0 ip ospf priority 50
Rekommendationer
- Set your maximum LSA settings to keep from killing weak boxes
- Baseline your network so you know how many LSAs normally float around
- Configure LSA warnings to alert of problems
- Crash each type of box on your network in a lab environment so you know what it will do under stress.
Konfiguration
Uppdatera reference bandwidth till 100G
router ospf 1 auto-cost reference-bandwidth 100000 #Mbits per second show ip ospf interface | i Cost
AD
router ospf 1 distance ospf intra-area 200 distance ospf inter-area 100 distance ospf external 120
Advertise a maximum metric so that other routers do not prefer the router as an intermediate hop
max-metric router-lsa on-startup 60
Authentication
Klassisk OSPF authentication är none/null, clear-text eller MD5. Default är none och man slår på det per interface. Går även att köra authentication på virtual links, se det stycket.
Enable clear-text authentication on area 0
router ospf 1 area 0 authentication interface gi0/1 ip ospf authentication-key [password]
Enable MD5 authentication on area 0
area 0 authentication message-digest interface gi0/1 ip ospf message-digest-key 10 md5 [password]
Enable MD5 authentication on an interface
interface gi0/1 ip ospf authentication message-digest ip ospf message-digest-key 10 md5 [password]
Verify
show ip ospf interface | i Ethernet|authentication
Extended cryptographic authentication finns i modernare implementationer av OSPF och har stöd för key-chains och SHA-HMAC. Nyckel med högst id används ifall det finns flera nycklar som är aktiva. Key-chain
key chain HACKER key 1 key-string SECRET cryptographic-algorithm hmac-sha-512
Per interface, det finns inget area-kommando som slår på key-chain auth på alla interface som vid klassisk konfiguration.
int gi2 ip ospf authentication key-chain HACKER
Default Routing
default-information originate
Om man inte har någon gateway of last resort kan man ändå annonsera ut en default route.
default-information originate always
Summarization
ABR
router ospf 1 area 10 range 10.10.0.0 255.255.252.0
ASBR
router ospf 1 summary-address 10.10.0.0 255.255.252.0
Convergence
Tuning protocol parameters per interface
ip ospf hello-interval seconds ip ospf dead-interval seconds ip ospf retransmission-interval seconds ip ospf transmit-delay seconds
Timers: LSA & SPF
router ospf 1 timers throttle spf 100 1000 10000 timers pacing flood 50 timers paciong retransmission 75 timers throttle lsa all 10 4000 6000 timers lsa arrival 2000
Filtering
Inter-area
router ospf 1 area 1 filter-list prfix PFXLIST out
ip prefix-list PFXLIST seq 5 deny 10.10.0.0/24 ip prefix-list PFXLIST seq 10 permit 0.0.0.0/0 le 32
Intra-area
Går att göra med en distribute-list dock måste alla routrar vara konfade likadant annars kan det bli blackholing.
access-list 1 deny 172.16.3.1 access-list 1 permit any router ospf 1 distribute-list 1
Alternativt
summary-address 10.0.0.0 255.255.255.0 not-advertise
Administrative Distance
Route-Maps
LSA Type-3 Filtering
Database Filtering
Virtual Link
OSPF kräver att alla areor är anslutna till area 0. I vissa scenarior kan det vara svårlöst och då kan man använda sig av virtual links för att tunnla OSPF-paket över en annan nonbackbone-area. ABR:n som ej har en direktanslutning till area 0 kan på så sätt få en full kopia av LSDB i area 0. Det har inget med data plane att göra utan endast OSPF control plane. En virtual link syns i LSDB som en unnumbered point-to-point länk. Arean som tunneln går över blir en transit area och den måste vara en vanlig area, dvs ingen stub eller nssa. Detta pga av att data plane går därigenom som vanlig routad trafik så den arean måste känna till allt, intra-, inter- och external routes. Virtual link är rekommenderat som backup- eller temporär anslutning.
R1 ABR mellan area 0 och 1
router ospf 1 network 10.0.1.0 0.0.0.255 area 1 network 1.1.1.0 0.0.0.255 area 0 area 1 virtual-link 3.3.3.3 #Router-ID
R3 ABR mellan area 1 och 2
router ospf 1 network 10.0.1.0 0.0.0.255 area 1 network 10.0.2.0 0.0.0.255 area 2 network 3.3.3.0 0.0.0.255 area 2 area 1 virtual-link 1.1.1.1 #Router-ID
Verify
show ip ospf virtual-links
Diverse
LFA
Loop-Free Alternate Fast Reroute. Single Hop LFA / IP FRR.
MTU mismatch
ip ospf mtu-ignore
Discard
no discard-route external
iSPF
SPF-algoritmen behöver inte köras för alla länkar varje gång det sker en topologi-förändring. Med incremental SPF körs endast algoritmen för de delar som har påverkats av förändringen för att spara CPU-cykler. Detta går att styra individuellt på enheterna med ispf-kommandot. Det kan vara svårt att veta exakt hur mycket skillnad detta gör men generellt ju större topologi ju större skillnad.
router ospf 1 ispf show ip ospf | i Incremental
Redistribution
Default seed metric: 20 (except BGP)
Static
redistribute static
RIP
redistribute rip subnets
EIGRP
redistribute eigrp 1 subnets
Troubleshoot
ping 224.0.0.5 show ip ospf interface brief show ip protocols show ip ospf events show ip ospf topology-info show ip ospf database router show ip ospf rib show ip ospf statistics
Reset database and neighbors
clear ip ospf process