Cisco MPLS

From HackerNet
Revision as of 16:05, 4 November 2016 by Helikopter (talk | contribs)
Jump to: navigation, search

Multiprotocol Label Switching (RFC 3031) är protokoll som routrar kan använda för att forwardera paket baserat på labels istället för destination IP address. Routrarna kallas då LSR, Label Switch Router. Genom att separera forwarding decision från destination IP address kan besluten baseras på andra faktorer såsom QoS eller Traffic Engineering. Det kan användas för vanlig unicast IP forwarding men också annat som t.ex. VPN-tjänster. En grupp av paket som skall till ett visst destinationsnät kommer vanligtvis att skickas samma väg genom nätverket. I MPLS grupperas dessa paket i klasser som kallas Forwarding Equivalence Class, FEC. Alla paket som tillhör samma FEC skickas med samma label. En MPLS-header är 4 bytes och innehåller bl.a. ett 20-bitars fält som är den unika labeln. Bottom-of-stack bit, QoS marking och TTL finns också i headern. Olika protokoll kan användas för control plane, t.ex. LDP och MP-BGP. MPLS på Cisco-enheter använder sig av CEF.

MPLS går även att tunnla över IP (RFC 4023), se Cisco GRE. För Traffic Engineering se Cisco RSVP-TE.

Tables

För varje VRF skapas det nya tabeller, show cef table

RIB

show ip route
show ip route vrf NAME

LIB, innehåller all labels known to LSR

show mpls ldp bindings
show mpls ldp binding summary
show mpls ldp bindings vrf NAME

FIB, används för paket utan label

show ip cef
show ip cef vrf NAME

LFIB, används för paket med label

show mpls forwarding-table
show mpls forwarding-table vrf NAME

LDP

För att veta vilka labels en LSR ska sätta på paketen som ska skickas iväg används Label Distribution Protocol (TDP är legacy). Routrar bygger LDP-grannskap och utbyter sedan dynamiskt labels med varandra för att kunna bygga korrekta forwarding tables. Det fungerar ungefär som ett routingprotokoll. För unicast IP routing så utbyts en label per prefix i routingtabellen, Cisco IOS använder independent label distribution control. Dyker det upp något nytt i routingtabellen skapas en ny lokal label i LIB och sedan annonseras det till alla LDP-grannarna. På så sätt kan en label-switched path (LSP) byggas. Dessa är enkelriktade och en enskild LSR känner inte till hela pathen för det behövs inte. En label går aldrig längre än till grannen utan där poppas eller byts den mot nästa routers label. MPLS låter routingtabellen och IGP stå för path selection och därmed loop-prevention och convergence.

LDP använder sig utav två sorts paket för att kommunicera. För neighbor discovery skickas Hello-paket till 224.0.0.2 UDP 646 var 5:e sekund. När grannskap är bildat görs all informationsöverföring (updates) med unicast som skickas på TCP 646.

LDP Hello:

Cisco MPLS LDP Hello.PNG

MPLS-nätet måste använda något routingprotokoll för att lära sig routes och dra nytta av label-annonsering, vanligtvis används ett IGP för detta. När en ny lokal label skapas, pga nylärd route från IGP, annonseras det till alla LDP-grannarna (även den man fick route-uppdateringen ifrån, frame-mode MPLS har inte hört talas om split horizon :). Detta händer för alla routes på alla LSR. Router-ID väljs på exakt samma sätt som för OSPF. Om man har en LSR med LDP-grannskap till säg 5 andra enheter så kommer alla grannskap gå ner om man stänger ett av sina 5 interface eftersom LDP skapar sitt ID utifrån tillgängliga IGP interface. Det ändras om ett interface försvinner vilket det gör om man t.ex. shutar ett av dem. Hold time ska kommas överens om och är default 15 sekunder (3x Hello). Om två LSR inte kommer överens om timers, label distribution method etc kan man öka intevallet mellan försöken med mpls ldp backoff-kommandot. T.ex. från 5 sekunder till att börja med till 120 sekunder mellan varje försök.

Global

mpls label protocol ldp  #Default
mpls ldp router-id loopback0 [force]
show mpls ldp parameters 

Man kan per interface slå på MPLS, höja MTU för att stödja MPLS-headers och ändra vilken adress som ldp ska bygga grannskap med. Om man har flera länkar till samma LSR och ska sätta upp flera parallella LDP-sessioner måste man använda samma transport address på alla interface.

interface gi1/1
 mpls ip
 mpls mtu 1508
 mpls ldp discovery transport-address interface

Verify

show mpls interfaces [vrf NAME]
show mpls ldp neighbor
show mpls ldp discovery

Graceful

mpls ldp graceful-restart
show mpls ldp graceful-restart

Labels

  • 0 – IPv4 Explicit null – Instead of popping label at PHP, the second last router sets top label to zero, this means EXP bits are preserved.
  • 1 – Router alert – Alerts LSR that packet needs a closer look. Can’t be forwarded in hardware, software needed.
  • 2 – IPv6 Explicit null
  • 3 – IPv4 Implicit null – Pop label

Label range, default är 16-1048575 (label range kan skilja beroende på modell)

mpls label range 200-299
show mpls label range

Mode

mpls label mode all-vrfs protocol all-afs per-prefix  #Default
mpls label mode all-vrfs protocol bgp-vpnv4 per-vrf

Advertisments
Default på Cisco IOS annonseras labels för allt, detta går att ändra.

no mpls ldp advertise-label
mpls ldp advertise-lable for <dest prefix> to <ldp peer>

Label space

show mpls ldp discovery
10.0.0.10:0
0 betyder platform wide label space
1 betyder interface label space

TTL

När en E-LSR får in ett IP-paket sänker den IP TTL med ett och sedan pushar den en label och kopierar TTLen till MPLS-headern. När sedan paketet traverserar en LSR sänks endast MPLS-TTLen men vid egress E-LSR kopieras MPLS-TTLen till IP TTL och skickas vidare. Detta går att ändra på så att IP-TTL inte kopieras utan MPLS-TTL sätts till 255 av ingress E-LSR för att hela MPLS-nätet verkligen ska vara som ett router hop. Detta behöver endast konfigureras på PE.

no mpls ip propagate-ttl

Session Protection

Om två directly connected LDP-grannar tappar kontakten flushas alla bindings från LIB. Men det behöver inte betyda att det inte fortfarande finns IP-reachability mellan dem en annan väg. Session Protection är en optimerings-feature som gör att LIB inte flushas sålänge det finns en annan väg till LDP-peer, targeted LDP sätts då upp för att hålla LIB synkat. När sedan directly connected grannskapet kommer tillbaka behöver ej allt synkas om. Detta måste konfigureras på båda sidor annars kommer inte andra sidan acceptera targeted hellos. Max hops är 255 och för Hello och Hold time gäller 10 sekunder respektive 90 sekunder default.

mpls ldp session protection
mpls ldp discovery targeted-hello accept
show mpls ldp neighbor detail | i Targeted|Session 

Både session protection och accept unicast hellos kan begränsas med ACL.

Security

Med autentisering kan man säkra LDP-kommunikationen. ACL ska träffa LDP ID som andra sidan har och måste vara standard.

ip access-list standard LDP-PEERS
 permit host 10.0.0.5
 permit host 10.0.0.6
mpls ldp password required for LDP-PEERS
mpls ldp neighbor 10.0.0.5 password SECRET

Verify

show mpls ldp discovery detail | i Ethernet|Password

IGP

LDP går att autokonfa tillsammans med IS-IS och OSPF, dvs slå på LDP på de interface som är aktiva i IGPn, detta kan antingen göras per interface eller under routingprocessen.

router ospf/isis 1
 mpls ldp autoconfig

Synchronization
Länkkostnaden för nyetablerade grannskap sätts till max tills LDP är klar med labelutbyte och berättar för link-state IGP att det är okej att använda länken.

Per interface

interface gi2
 mpls ldp igp sync

Alternativt under IGP

router ospf/isis 1
 mpls ldp sync

Verify

show mpls ldp igp sync
show mpls interface detail | i Interface|IGP

VPN

MPLS VPN (RFC 4364) är en populär MPLS-applikation. Det räknas som trusted VPN och PHP används default. För PE-PE label utbyten används MP-BGP. För att VPN-trafik ska fungera måste PE ha en route till next-hop PE, det går ej med en default route. Control plane kommer att fungera men ej data plane. För L2 VPN se Cisco VPLS.

ip bgp-community new-format
show ip bgp community ?  #Så står det antingen aa:nn eller 1-4294967295

Route Distinguisher: är ett 64-bitars nummer som skickas med BGP-uppdateringarna och används för att göra routes unika mellan VRFer. Det används med adressfamiljerna vpnv4 och vpnv6.

Route Target: skickas med BGP-uppdateringarna som ett Extended Community PA. Det används för att bestämma vilken/vilka VRFer routsen ska in i.

Import och export bestämmer vad som ska redistribueras mellan VRF och BGP.

Add IBGP neighbor

router bgp 100
 neighbor 10.0.0.10 remote-as 100
 address-family vpnv4 unicast
  send-community extended

Default är att droppa VPNv4 updates för RTs som det inte finns någon lokal vrf för. Detta kan man ändra på.

router bgp 100
 no bgp default route-target filter

Man kan dölja MPLS-nätet endast för VPN-kunder.

no mpls ip propagate-ttl forwarded 

Man kan partitionera upp nätverket genom att skapa RR-grupper som filtrerar på route-targets.

address-family vpnv4
 bgp rr-group EXTCOM-LIST

6VPE

6VPE (RFC 4659) är en teknik för att köra IPv6 över IPv4 MPLS-nät. Adressfamilj VPNv6 måste aktiveras på IPv4 iBGP-grannskapen mellan PEs/RRs. VPNv6 prefixen har en IPv4-mappad IPv6-adress som next-hop genom MPLS-nätet och en IPv4 LSP finns mellan PEs. Next-hop-adressen måste finns i IPv4-routingtabellen och en LSP måste existera för destinationen.

router bgp 100
 address-family vpnv6
  neighbor 10.0.0.10 activate
  neighbor 10.0.0.10 send-community extended

Inter-AS MPLS VPN

Back to Back VRFs Option 10A
PE använder iBGP för att distribuera labeled VPN-routes inom sitt AS som vanligt. PE kommunicerar med andra sidan PE med ett sub-interface, länknät och eBGP-grannskap per VRF. Det krävs ingen MPLS mellan PE utan det är unlabeled IP-adresser som annonseras. Detta är dock inte den mest skalbara lösningen.

VPNv4 eBGP Option 10B
PE använder iBGP för att distribuera labeled VPN-routes inom sitt AS som vanligt. PE använder sedan eBGP för att distribuera labeled VPN-routes till PE i ett annat AS, som i sin tur distribuerar dem till PE routrar i sitt AS. Det kan finnas flera vägar mellan de olika AS för redundans och ökad kapacitet. Service Providers måste komma överens om detta. Detta är mer skalbart eftersom det räcker med ett BGP-grannskap per koppling mellan AS.

interface GigabitEthernet1/0
 mpls bgp forwarding

VPNv4 between RRs Option 10C
(eller PEs using multihop eBGP)

Istället för att använda PEs för att hålla koll och distribuera VPN-routes bygger man grannskap mellan RRs i varje AS. Dock måste PE hålla koll på labeled routes till alla andra PE/RR i sitt AS och skicka med eBGP till andra sidan AS så deras PE/RR hittar till PE/RR i det egna AS. Då kan PE/RR i olika AS bygga eBGP multi-hop grannskap och utbyta labeled VPN-routes. Om P routrar får känna till PE i andra AS fungerar det som vanligt med dubbla labels. Men om det däremot inte är uppsatt så måste det trippel labelas. En för kundens IP till egress PE, en satt av ASBR för egress PE och en för IGP next-hop. Använder man RR är detta ett väldigt skalbart alternativ.

VRF Lite

VRF Lite är vrf:er utan mpls. Man kan se det som virtuella routrar fast med delat management.

show vrf
show cef vrf

Konfiguration

vrf upgrade-cli multi-af-mode common-policies
show vrf detail | i CLI

Kolla vilka interface som tillhör vilken vrf.

show ip vrf interfaces

Man kan i EXEC mode hoppa mellan vrf:er och kommandon som show ip route visar då den aktuella RIB:en.

routing-context vrf Cust-A

Import/Export
Det går att styra vad och vilken community som ska sättas på det som ska importeras och exporteras med hjälp av route-maps.

ip prefix-list Cust-A_DENY seq 5 permit 172.20.0.0/24

route-map Cust-A_EXPORT deny 10
 match ip address prefix-list Cust-A_DENY
route-map Cust-A_EXPORT permit 20

ip vrf Cust-A
 export map Cust-A_EXPORT

ICMP

MPLS Echo skickas unicast till LDP-grannen med L3 destination address 127.0.0.1 på UDP 3503.

Echo Request:

Cisco MPLS Echo Request.png

Echo Reply:

Cisco MPLS Echo Reply.png

Man kan med MPLS-ping testa konnektivitet till en FEC, så detta funkar endast ifrån en LSR samt inga VPN-prefix fungerar heller utan endast det man lärt sig med LDP.

ping mpls ipv4 10.1.1.1/32 

Med MPLS-traceroute kan man få ut mer information jämfört med vanlig traceroute eftersom det skickas mer data i payloaden.

traceroute mpls ipv4 10.1.1.1/32

6PE

IPv6 Provider Edge (RFC 4798) är en teknik för att köra IPv6 över ett IPv4+MPLS-nät. IPv6 prefix med tillhörande label utbyts genom att skicka det med IPv4 iBGP mellan PEs (eller via route reflector). Alla IPv6-prefix finns i den globala routingtabellen till skillnad från 6VPE. IPv6 prefixen har en IPv4-mappad IPv6-adress som next-hop inom MPLS-nätet och IPv4 LSP:er används mellan 6PEs. Detta gör att man inte behöver konfigurera next-hop-self. Däremot om IPv4-adressen inte finns i routingtabellen eller om det inte finns någon LSP kommer IPv6-prefixet att stå som inaccessible.

router bgp 100
 address-family ipv6
  neighbor 10.0.0.10 activate
  neighbor 10.0.0.10 send-label

NX-OS

Förutsättningar

install feature-set mpls
feature-set mpls
feature mpls l3vpn
feature mpls ldp

interface loopback 1
 ip address 10.0.0.1/24

mpls ldp configuration
 session protection
 router-id loopback 1

Aktivera på interface

interface e1/1
 mpls ip

Synk med routing protokoll

router isis P1
 mpls ldp sync

Authentication

ip prefix-list <namn> permit <granne1>/32
mpls ldp configuration
 password required for <prefix-list>
 password option 1 for <prefix-list> key-chain <key-chain-name>